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Abstract 

Let R be a G- graded commutative ring and G be a group with identity e. in this paper we show 

that every graded primary submodule of a graded representable module over a G-graded ring 

is graded representable and here we study graded representable module and the graded primary 

submodules of a graded module over a G-graded commutative ring. 
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Introduction 

Secondary modules have been studied extensively by many authors (Atani 2006, Macdonald 

1973, Nastasescu 1982). Here we examine when graded submodules of a graded representable 

module are graded representable a number of results concerning of this class of submodules. 

Various properties of such modules are considered. 

Before we state some results let us introduce some notation and terminology. Let G be an 

arbitrary group with identity e. A commutative ring R with non-zero identity is a graded if it 

has a direct sum decomposition (as an additive group) R = gGRg such that 1 Re ; and for all 

g, h  G, RgRh  Rgh. If R is G-graded, then an R-module M is said to be G-graded if it has a 

direct sum decomposition M = gGMg such that for all g, h  G, RgMh  Mgh. An element of 

some Rg or Mg is said to be homogeneous element. A submodule of N  M, where M is G-
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graded, is called G-graded if N = gG(NMg) or if, equivalently, N is generated by 

homogeneous elements.  

Moreover, M/N becomes a G-graded module with g-component (M/N)g = (Mg+N)/N for g  

G. Clearly, 0 is a graded submodule of M. Also, we write h(R) = gGRg and h(M)= gGMg. 

A graded ideal I of R is said to be a graded prime ideal if I ≠ R; and whenever abI, we have 

aI or b I, where a, bh(R). The graded radical of I, denoted by Gr(I), Is the set of all xR 

such that for each gG there exists ng >0 with 𝑥

 I. A graded ideal I of R is said to be a 

graded primary ideal if I ≠ R; and whenever a,bh(R) with ab I, then aI or b Gr(I) = P is 

a graded prime ideal of R, and we say that I is a graded P-primary ideal of R (Refai, 2004). 

 Let S be a commutative ring and let M an R-module. Given an element a of S, we say 

that a divides M if aM = M, and we say that a is nilpotent on M if anM = 0 for some n, We say 

that M is secondary if it is non-zero and every aS either divides M or is nilpotent on M; in 

this case the ideal rad(M) = P is prime and we also say that M is P-secondary (Macdonald, 

1973). 

2. Graded primary submodules  

 First, we give some basic basic facts concerning graded primary submodules of a 

graded module. Next, we study graded submodules of a graded representable module. 

Definition 2.1 Let R be a G-graded ring, M a graded R-module and N a graded R-submodule 

of M. 

(i) We say that M is a graded free R-module if it has an R-basis consisting of homogeneous 

elements.  

(ii) N is a graded prime submodule of M if N ≠ M; and whenever a  h(R) and m h(M) with 

am  N, then either m N or a  (N: R M). 

(iii) N is a graded primary submodule of M if N ≠ M; and whenever a  h(R) and mh(M) 

with am  N, then either m  N or ak  (N:R M) for some k. 
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(iv) N is a graded maximal submodule of M if N ≠ M and there is no graded submodule K of 

M such that N  ஷ
 K  ஷ

  M. 

(v) We say that M is graded simple module if it has only two graded submodules 0 and M. 

The following lemma is known, but we write it here for the sake of reference. 

Lemma 2.2 Let R be a G-graded ring, M a graded R-module and N a graded R-submodule of 

M. Then the following hold: 

(i) N is a graded maximal submodule of M if and only if M/N is a graded simple R-Module. 

(ii) If rh(R), xh(M) and I is a graded ideal of R, then (N: R M) is a graded ideal of R, Rx, IN 

and r N are graded submodules of M. 

 The graded radical (resp. Radical) of a graded submodule (resp. submodule) N of a 

graded module (resp. module) M, denoted by Gr (N), (resp. rad(N)) is defined to be intersection 

of all graded prime (resp. prime) submodules of M containing N. Clearly, if N and K are graded 

submodules of M with KN, then Gr(K)  Gr(N). Let M be zero-divisor on M if there exists 

0 ≠ m M such that rm = 0. 

Lemma 2.3 Let M be a graded simple module over a G-graded ring R. Then every graded 

zero-divisor on M is an annihilator of M 

Proof. Let r be an arbitrary graded zero-divisor on M. Then there exists 0 ≠ a h(M) such that 

ra=0. Since M is a simple graded R-module, we get Ra = M. Hence rM = r(Ra) = (Rr)a = R(ra) 

= 0. Thus, r is an annihilator of M. 

Proposition 2.4 Let M be a graded module over a G-graded ring R. Then every graded 

Maximal submodule of M is a graded prime. 

Proof. Let N be   an arbitrary graded maximal submodule of M. Let  r mN where rh(R)and 

mh(M)  N. Since 0 ≠ (m+N) h(M/N) and r(m+N) = 0, we get r is a graded zero-divisor on 

graded module M/N; hence by lemma 2.2 and lemma 2.3, r(N:R M), as required. 
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Proposition 2.5 Let R be a G-graded ring, M a graded R-module and N a graded R-submodule 

of M. Then the following hold: 

(i) If N is a graded primary submodule of M, then (N: R M) is a graded primary ideal of R. 

(ii) If N is a graded prime submodule of M, then (N:R M) is a graded prime ideal of R. 

Proof. (i) Clearly, (N:R M) ≠ R. Let ab  (N: RM) with b(N: R M) where a, bh(R), So there 

exists m  h(M)  N such that bm  N. As abm  N, N graded primary gives ak M N for 

some k, as needed. 

(ii) The proof is similar to that of (i). 

Proposition 2.6 Let R be a G-graded ring, M a graded free R-module and I an ideal of R. Then 

the following hold.  

(i) If I is a graded primary ideal of R, then IM is a graded primary submodule of M. 

(ii) If I is a graded Prime ideal of R, then I M is a graded prime submodule of M. 

Proof. (i) As M is a cancellation module and I ≠ R, we get I M ≠ M, Assume that M is the 

graded free R-module with a homogeneous basis {xg:g = G} and let rm  I M with m  I M 

where r  h(R) and m  h(M). We can write m = ∑  
ୀଵ 𝑟𝑥

 with ri  R, Since M  I M, there 

exists an integer J such that rjI. There are elements b1,........,bnI such that ∑  
ୀଵ (rri)𝑥

 = 

∑  
ୀଵ bi𝑥

 , so rri=b, for every i=1,.....,n; hence rrj I. 

Since rj=∑  
ୀଵ rgiI with 𝑟

 ≠ 0, we obtain that 𝑟
  I for some t. It follows that 𝑟𝑟

  I since 

I is graded ideal, so rm
  I for some m; hence rm

 M IM, as required. 

(ii) The proof is similar to that of (i) 

One approach to the graded case is simply to redefine all of the treminology to involve only 

homogeneous elements and graded submodules. In this veiw, a non-zero graded module M is 

graded secondary if every homogeneous element of R either divides M or is nilpotent on M, in 
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which case Gr(annM) = P is a graded prime ideal of R, and M is said to be graded P-secondary. 

A graded module M is said to be graded secondary representable if it can be writen as a sum 

M = M1+....+MK with each Mi graded secondary, and if such a representation exists (and is 

irredundant) then the graded attached primes of M are Att (M) = {Gr(annM),....,Gr(annM)}. 

Note that a graded secondary module, in general, is not secondary. For example, as discussed 

in (Sharp, 1986), if R = k[x] is a polynomial ring in one variable with the natural Z-graded ring 

and M = k[x,1/x], then M is graded secondary but is not secondary. so the graded secondary 

and secondary modules are different. concepts. 

A graded submodule N of M is said to be graded pure submodule if aN = N aM for every a 

h(R). We have the following proposition. 

Proposition 2.7 Let R be a G-graded ring, M a graded R-module and N a non-zero graded pure 

R-submodule of M. Then M is a Graded P-secondary if and only if both N and M/N are graded 

P- secondary. 

Proof. Assume  that M is P-secondary and let ah(R). If a P, then asN asM = 0 and as(M/N) 

= 0 for some s, so a is nilpotent on N and M/N. If aP, then aN = NaM = N and a(M/N) = 

M/N, so a divides N and M/N; Hence N and M/N are P-secondary. Conversely, assume that N 

and M/N are P-secoundary and let b h(R). If bP, then bt MN and 0 = btN = NbtM = btM 

for some t, so b is nilpotent on M. if bP, then N = bN = NbM and b(M/N), so bM = M, as 

required. 

Theorem 2.8 Let R be a G-graded ring, M a graded secondary R-module and N a non-zero 

graded P-prime R-submodule of M. Then N is graded P-secondary. 

Proof. Assume that M is a graded Q-secondary R-Module and let rh(R). If rQ, then rs N  

rs M = 0 for some s, so r is nilpotent on N. Suppose that rQ; we show that r divides N. so 

assume that  aN. Then there exists b=∑  ௧
ୀଵ 𝑏

  M (with 𝑏   ≠ 0) such that a = rb. As N is 

graded, r𝑏
N for every i = 1,....,t, so for each i, N graded prime gives 𝑏

  N; hence bN. 

It follows that r divides N, so N is a graded Q-secondary R-module. 
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 Now we need to show that P = Q. Since the inclusion PQ is trivial, we will prove the 

reverse inclusion. Suppose that c = ∑  
ୀଵ chiQ with chi ≠ 0. Then there are integers mi such 

that 𝑐

 M =0 for i=1,.....,n since Q is graded and M is graded Q-secondary. As M ≠ N, there 

is an element x=𝑥భ
+...+𝑥

 M (with 𝑥  ≠ 0) such that 𝑥ೢ   N for some w. Therefore, for 

each i = 1,...,n, 𝑐

  𝑥ೢ
= 0  N, so N graded Prime gives chi  P; hence c  P, as required. 

Lemma 2.9 Let R be a G-graded ring, M a graded R-module and N a graded P-secondary R-

submodule of M. Then the following hold. 

(i) If K is a graded primary submodule of M, then N  K is graded P-secondary. 

(ii) If K is a graded prime submodule of M, then N K is graded P-secondary. 

Proof.  (i) Assume that a h(R) and let a  P. Then am (N  K)  am N = 0 for some m, so a 

is nilpotent on NK. Suppose that a P; we show that a divides NK. It suffices to show that 

NK a (NK). If b  N K, then b=am for some m=∑  
ୀଵ 𝑚

 N with 𝑚
 ≠ 0. Then for 

each i=1,....,s, a𝑚
 K since K is a graded submodule of M. It follows that 𝑚

 K for every 

i (otherwise, if 𝑚
  K for some j and as

  (K :R M) for some s,  

then 𝑚ೕ
  N = as

 N  as M  K which is a contradiction), so mK; hence ba (NK) and 

the proof is complete. 

Theorem 2.10 (i) Every graded primary submodule of a graded representable module over a 

G-graded ring is graded representable. 

(ii) Every graded prime submodule of a graded representable module oer a G-graded ring is 

graded representable. 

Proof. (i) Assaume that M = ∑  
ୀଵ  Si is a miimal graded secondary  representation  of M with 

Att (M) = {P1,.....,Pk} and let N be a graded P-primary submodule of M. There exists a 

submodule Si, such that S1 ⊈ N since N ≠ M. First we show that P = P1 Let a = 𝑎
 +...+𝑎

  

P1 with 𝑎
≠ 0. There are integers n1,.......,nt and a homogeneous element yh  S1  N  such that 
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𝑎

  yh = 0 for every i, so N graded Primary given 𝑎
  P for every i; Hence a  P. Therefore, 

P1  P. For the other containment, suppose that there exises a homogeneous element Ch  P 

with ch P1 . Then S1 = 𝑐
௦ S1   𝑐

௦ M  N for some s which is a contradiction. Thus, P =P1 

Likewise, if sj  N for j ≠ 1, then  P = P1 = Pj which is a contradiction. We will show that Si  

N for i=2,....k. As P ≠  Pi we divide the proof into two cases: 

Case 1 P ⊈ Pi 

There exists a homogeneous element ph  P with ph  Pi. Then Si = 𝑝
௧  Si   𝑝

௧  M  N for 

some t. 

Case 2 Pi ⊈ P 

There is a homogeneous element ag  Pi with ag  P. Let b = ∑  
ୀଵ  𝑏

  Si with 𝑏
  ≠  0. 

Then there is an integer n such that 𝑎
  𝑏

 = 0N, so N graded primary gives 𝑏
N for 

i=1,....,m; hence b  N. Thus Si  N. It follows that N = N M = NS1 +∑  
ୀଶ Si. Now the 

assertion follows form Lemma 2.9.  

Corollary 2.11  Let R be a G-graded ring, M a graded representable R-module and N a graded 

primary (resp. Graded prime) R-submodule of M. Then Att (N)  Att (M). 

Proof.  This follows from Theorem 2.10 

Let R be a G-graded ring. The graded dimension of R is defined as the supermum of all numbers 

n for which there exists a chain of graded prime ideals P0  P1  P1... Pn in R and it is 

dnoted by Gdim R. We say that R is a G-graded integral domain whenever a, b h(R) with ab 

= 0 implies that either a = 0 or b = 0. 

Lemma 2.12 Let P be a graded prime ideal of a G-graded ring R, M a graded R-module and 

{Ni}iI a family of graded prime R-submodules of M such that (Ni : R M) = P for every i  I. 

Then iI Ni is a graded prime submodule of M. 

Proof.  The proof is straight forward. 
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Theorem 2.13 Let R be a G-graded integral domain with Gdim R = 1, M a graded  

representable R-module and N a graded primary R- submodule of M.  Then Gr(N) is graded 

representable. 

Proof.  Consider the greded ideal (K : R M) for any graded prime submodule K containing N. 

These ideals are graded prime by Proposition 2.5 and N  K implies (N : R M)  (K : R M); 

hence by [5, Proposition 1.2], Gr(N:R M)  Gr (N: R M) for all such K. For any one of these 

prime submodules K, we generate the chain of graded prime ideals 0 Gr(N:R M)  (K: R M) 

since by [5, Lemma 1.8], Gr(N : R M) is a graded Prime ideal of R. As Gdim R=1, we must 

have Gr(N: R M)  = (K : R M) for every graded prime submodule K containing N. By Lemma 

2.12 Gr (N) = Nk K is a graded prime submodule of M. Now the assertion follows form 

Theorem 2.10 

Lemma 2.14  Let R be a G-graded ring , M a graded R-module and N a graded rep-resentable 

R- submodule of M. Then if K is a graded Primary (Resp. graded prime) submodule of M, then 

N K is graded representable. 

Proof. By Theorem 2.10, it suffices to show that NK is a graded primary submodule of N. 

Let an  N  K with n  N  K where a h(R) and n  h(N), so K graded primary gives as
 

M  K for some s; hence as (NK)  N, as required. 

Theorem 2.15 Let R be a G-graded ring, M a graded R- Module and N a graded R- submodule 

of M such that N possess a graded primary decomposition. If K is a graded representable 

submodule of M, then N K can be expressed as an intersection of finitely many graded 

representable submodules. 

Proof.  Let N=ୀଵ
  Ni where Ni is graded  Primary, be a normal decomposition. Then N K= 

(N1  K) ... (KNn). Now the assertion follows form Lemma 2.14. 
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